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Nonequilibrium potential for a reaction-diffusion model: Critical behavior and decay
of extended metastable states
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We study a piecewise linear version of a bistable reaction-diffusion model of an electrothermal
instability: the Ballast model. Our aim is to analyze the change in the relative stability of nonho-
mogeneous linearly stable states as some parameters—boundary reflectivity and system size—are
varied, as well as the critical-like behavior when some of these states coalesce. The analysis is carried
out through the use of the nonequilibrium potential or Lyapunov functional for this system, which
also allows us to study the decay of the metastable extended states.

PACS number(s): 05.70.Ln, 47.54.4r, 82.40.Ck

I. INTRODUCTION

Pattern formation in nonequilibrium systems has at-
tracted considerable attention during the last decade and
has become a very active research field [1]. Due to the ex-
tremely rich variety of nonequilibrium systems that arise
in physics, chemistry, and biology, there is a large num-
ber of possible mathematical descriptions. However, the
reaction-diffusion (RD) approach has been shown to be
a very fertile source of models for the description of pat-
tern formation phenomena in natural and social sciences,
and has become a kind of paradigm for such studies [2].

Related to pattern formation, boundary conditions
(BC’s) have been recently shown to play a relevant role
in the appearance and stability as well as in the propa-
gation of spatial structures, for one- and two-component
systems [3-5]. In a recent paper, we were concerned with
the role of BC’s in pattern selection, and more particu-
larly with the global stability of the resulting structures
[6]. The analysis was carried out by exploiting the no-
tion of the nonequilibrium potential or Lyapunov func-
tional of the system. This kind of approach has not
been used in the realm of RD systems because it is usu-
ally not possible, insofar as some potential conditions are
not fulfilled, to obtain a Lyapunov function for a general
problem. However, Graham and collaborators [7] —who
have been pioneers in introducing those concepts—have
investigated the form of such Lyapunov-like functionals
in problems related to spatially extended systems far
from equilibrium, described by the complex Ginzburg-
Landau equations. Their results indicate the possibility
of getting information about such functionals as well as
about global stability even though the system does not
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fulfill the above indicated potential conditions. When
the Lyapunov functional exists, such an approach offers
an alternative way of confronting a problem that has re-
cently attracted considerably attention, both experimen-
tally and theoretically; namely, the relative stability of
the different attractors, corresponding to spatially ex-
tended states, and the possibility of transitions among
them due to the effect of (thermal) fluctuations [8,9].

The specific model we shall focus on, with a known
form of the Lyapunov function, corresponds to a simple
one-dimensional, one-component model of an electrother-
mal instability [10,11] or, more generally, to an analog of
a broad class of systems called bistable reaction-diffusion
models [12]. The particular, nondimensional form that
we shall work with is [3,5,6]

8T = 82,T — T + Tho(T — To). 1)

In Ref. [6], we have analyzed the global stability of
the patterns and the relative change in stability for this
model, as some BC’s parameter was changed. A similar
analysis was also carried out for a particular activator-
inhibitor model in Ref. [13]. Here we want to analyze
how those results depend on the system size, and discuss
the application of some recent studies on the decay of
nonhomogeneous states to determine the mean lifetime
of these metastable states [14]. We also study the spe-
cial features that resemble the critical point behavior in
equilibrium phase transitions when—as the size or other
system parameters are varied—some of the linearly sta-
ble structures coalesce.

II. NONEQUILIBRIUM POTENTIAL

For the sake of concreteness, we consider here a class
of stationary structures 7'(y) in the bounded domain y €
(=yL,yr) with albedo boundary conditions at both ends,

dT

y=%yr
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where k£ > 0 is the albedo parameter. These are the
spatially symmetric solutions to Eq. (1) already stud-
ied in Ref. [3]. Such structures can also be seen as a
symmetrization of a set of stationary solutions to the
Ballast reaction-diffusion model in the interval (0,yz)

J

sinh(yc)v'(k,yr + v)/v(k,yL),
1 — cosh(y)v(k,yr — ye)/v(k,yL)s —Ye <y < ye (3)
sinh(yc)y' (k,yz — y)/v(k,yL),

T(y) =T, X

with v(k,y) = sinh(y) + k cosh(y), and v’ = 8yy. The
double-valued coordinate y., at which T = T, is given
by

L 1 1

= Ly - Ly |2 Evn) £ VR (hyn)? + 1 K2

1+k ’
(4)

with 2 =1-2T, /T, (-1 <2< 1).

When yT exists and y* < yr, the solution (3) repre-
sents a structure with a central hot zone (T > T.) and
two lateral cold regions (T' < T.). For each parameter
set there are two stationary solutions, given by the two
values of y.. In Ref. [3], it has been shown that the struc-
ture with the smallest hot region is unstable, whereas
the other one is linearly stable. The trivial homogeneous
solution T = 0 exists for any parameter set and is al-
ways linearly stable. These two linearly stable solutions
are the only stable stationary structures under the in-
dicated albedo boundary conditions. Other stationary
structures such as periodic solutions are always unsta-
ble [3,11]. Therefore, under suitable conditions, we have
a bistable situation in which two stable solutions coex-
ist, one of them corresponding to a cold-hot-cold (CHC)
structure and the other one to the homogeneous trivial
state. The unstable solution is always a CHC structure,
with a relatively small hot region.

For given values of z and yr, the albedo parameter k
has to be bigger than unity for both CHC structures to
exist. In fact, for £ < 1 the stable solution is a purely
hot structure, with T'(y) > T. for all y. However, for suf-
ficiently high k, y* becomes complex and the stationary
solutions (3) cease to exist. As for the dependence on the
system size, for fixed z and k > 1, the two solutions exist
for large yr, only. In the following, we concentrate on the
region of parameters where the two CHC structures do
exist.

For the albedo symmetric solution we are considering
here, the Lyapunov functional (LF) reads [6]

=2 [ {-ou+ @O du+ kT, 9)

with

T
G[T] = /0 [T + Tao(T' — T.)] dT". (6)

with a Neumann boundary condition at y = 0, namely,
dT/dy|y=0 =0.

We quote here, for reference, the explicit form of the
stationary structures:

=YL <Y < —Ye

Ye <y < YL,

[

Replacing Eq. (3), we obtain the explicit expression

e T N ¥ ) Tk 79,
F rYc # + Th Slnh(yc ) 'Y(kayL) . (7)
For the homogeneous trivial solution T'(y) = 0, instead,
we have F = 0.

In Fig. 1 we have plotted the Lyapunov functional F[T]
as a function of k for a fixed system size, y, = 2, and
various values of the ratio T./T}, i.e., for different val-
ues of z. The curves correspond to the inhomogeneous
structures F*, whereas the horizontal line stands for the
LF of the trivial solution. In the bistable zone, £ > 1,
the upper branch of each curve is the LF of the unsta-
ble structure, where F attains a maximum. At the lower
branch and for T = 0, the LF has a local minimum. For
each value of T, /Ty, the curve exists up to a certain crit-
ical value ko, at which both branches collapse. At this
point,

:/:zfy(lco,g,/l,)2 +1-k2=0 (8)

[compare with Eq. (4)], and

TZ [+ (ko,yL) (Z’Y(ko yL))]
FoFo="2 |22 gtz In| 222
°T 2 [v(ko,yL) vr 1+ ko

(9)
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FIG. 1. Values of the nonequilibrium potential F as a func-
tion of the albedo parameter k, for a fixed length (yr = 2)
and several values of T./T,. The inset shows the cusplike sin-
gularity that occurs when the stable and the unstable CHC
structures coalesce and disappear.
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FIG. 2. Values of the nonequilibrium potential F as a func-
tion of the length yr, for a fixed albedo parameter (k = 3)
and several values of T, /Th.

It is interesting to note that, since the LF for the unsta-
ble solution is always positive and, for the stable CHC
structure, ¥ - —oo as k — 1, the LF for this structure
vanishes for an intermediate value of the albedo param-
eter. At that point, the stable inhomogeneous structure
and the trivial solution interchange their relative stabil-
ity. In fact, T(y) = 0 switches from being a metastable
state to be more stable than the inhomogeneous struc-
ture.

Figure 2 shows the LF as a function of the system
size, for fixed k. Now the inhomogeneous structures ex-
ist above a certain value of yr. For increasing yr, the
trivial solution becomes a metastable state with respect
to the stable CHC structure. As y;, — oo, the LF for this
latter solution tends to —oo as F ~ —T,fyLz/2. For the
unstable solution, instead, the LF approaches a constant,

F = TEzlnz+ (1 — 2)//z]/2.

III. DECAY OF NONHOMOGENEOUS
METASTABLE STATES

As indicated in the Introduction, it is of particular in-
terest in RD systems to study the effect of the fluctua-
tions induced by external noise, because they can pro-
duce transitions between the different metastable states.
The linearly stable states correspond to attractors (min-
ima) of the LF while the unstable ones are saddle points,
defining the barrier between attractors [6]. The decay of
metastable states has been extensively studied [15]. How-
ever, the study of the decay of metastable states in ex-
citable RD and related systems is more recent and scarce
8,9,16].

In order to account for the effect of luctuations in our
model, we need to include in our time-evolution equa-
tion (1) a fluctuation term, modeled as an additive noise
source [10], yielding a stochastic partial differential equa-
tion for the random field T'(y, t):

3T (y,t) = 82,T — T + Tnb(T — T.) + £(y,t).  (10)

The simplest assumption about the fluctuation term
&(y,t) is that it is a Gaussian white noise with zero mean
value and a correlation function given by

€@, t) €W, 1)) =278(t —t') d(y — o), (11)

where v denotes the noise strength. It is also possible to
take into account noise sources yielding a multiplicative
noise term, but we shall not consider this possibility here.

The following scheme has been recently developed in
order to describe the decay of extended unstable states
[14]. To apply it, we need to assume that the noise
strength is weak enough, which assures that the stability
of the patterns without noise is qualitatively not altered.

To obtain the transition probability between
metastable and stable states, it is necessary to find the
conditional probability for the random field T'(y,t) to
have the value Tstabie(y,t) at time ¢, given that at the
initial time ¢ = 0 the system was in a state Ty,eta(y,0).
This probability can be represented by a path integral
[17] over those realizations of the random field £(y, ) that
satisfy the initial and final conditions, that is,

P[Tatable(ys t) IT(y’ 0)]

~ / PIEISIT (v, £) — T(v, 0)] DE(w, 1), (12)

where T'(y,0) = Tineta(y), and the statistical weight P[£]
for a Gaussian white noise is of the form

P[€] ~ exp [—% [ dt /_ZLL dy £z(y,t)] : (13)

In the limit of small noise intensity (y — 0), the main
contribution in Eq. (12) is given by the realizations of
the random field close to the most probable trajectory
[7,14,17]. This fact allows us to estimate the result of
Eq. (12) by the steepest-descent method. This procedure,
developed in Ref. [14], yields the following result for the
mean lifetime (or first-passage time) (7):

j:[Tunat(y)] - :F[Tmeta(y)] }
5 .

The factor 7o is usually determined by the curvature of
F[T] at its extrema and is typically several orders of mag-
nitude smaller compared to the average time (7) [15,18].

The behavior of () as a function of the albedo parame-
ter k is shown in Fig. 3, for a system of length y;, = 2 and
several values of T../T}, (corresponding to those depicted
in Fig. 1). There is a radical change in the behavior
when k overcomes a threshold value, as indicated after
Eq. (9), due to the change in the relative stability be-
tween the homogeneous and nonhomogeneous states. In
Fig. 4 we show the behavior of () as a function of the
system length, for a fixed value of the albedo parameter
(k = 3) and several values of T,/T}h, this time related
to those cases depicted in Fig. 2. Again we witness a
change in the behavior due to the change in the relative
stability as the system length is varied. The continuous
lines in both figures refer to the decay of the metastable
state towards the absolutely stable one, while the dotted

() =70 exp{ (14)
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FIG. 3. Values of ln(<:—0>) as a function of the albedo pa-
rameter k, for a fixed length (yr = 2) and several values of
T./Tr. The full lines indicate the decay from the unstable to
the stable state, while the dotted lines indicate the transition
when the relative stability is changed.

line indicates the continuation of the lines depicting the
value of (7) from the original state.

The results just obtained will be valid as long as the
barrier height between the metastable and the stable
states (given by the value of the LF at the unstable state)
is large enough, assuring that the Kramers-like formula
Eq. (14) applies. Hence it is relevant to study the system
at the points where the indicated barrier can disappear.

IV. CRITICAL-LIKE BEHAVIOR

In this section we study the transition from the bistable
to the monostable situation, where the stable and the
unstable CHC structures coalesce and disappear. This
happens at the point where the LF has the value Fy
indicated in Eq. (9), when the relevant parameters satisfy

Eq. (8).
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FIG. 4. Values of ln(—(:—o)) as a function of the length yr,
and for a fixed albedo parameter £ = 3 and several values of
Te/Tn. The full lines indicate the decay from the unstable to
the stable state, while the dotted lines indicate the transition
when the relative stability is changed.

A detailed analysis of F near this critical value seems
to indicate that a cusp singularity occurs at that point
(see inset in Fig. 1). This suggests that near the transi-
tion F[T] admits a phenomenological representation like
that of Landau—as a thermodynamical-like potential—
by means of a function of the form

a

FIT)=Fm) =

a,ba ¢
mA g g (15)
The variable n parametrizes a one-dimensional set in the
space of functions T'(y) and, in analogy with phase tran-
sition problems, plays the role of an order parameter. As
defined in Eq. (15), F has a minimum for n = 0, which
we associate with the minimum of the LF at T'(y) = 0.
The other two extrema of F(7n) occur at

+ b

1
n*t = —— + —+/b% — 4ac,

- 16
2a 2a (16)

where 7~ is a maximum—to be associated with the un-
stable solution—and 7t is again a minimum, related to
the stable CHC structure.

In order to relate the coefficients in Eq. (15) to the
original parameters of our problem, we expand F as given
by Eq. (7) around the cusp and identify this critical point
with the set of parameters (a,b,c) at which n* and 5~
merge and disappear. We obtain the equations

P1-4g)32 = [z%y(ko,yr)* + 1 — K?]3/2 an
6 ZZ’Y(kO,yL)a
and
P 1 5
4 _E+q—q = Fo, (18)

for the unknown quantities p and ¢, which are combina-
tions of the parameters in Eq. (15):

b* ac
p= 23’ q= 2 (19)
Evidently, since in the comparison of Egs. (7) and (15),
the parameters a, b, and ¢ appear through the combina-
tions p and ¢, only two of them can be obtained inde-
pendently. This is essentially due to the arbitrariness in
the definition of the variable 7 in the space of functions
T(y). In particular, it can be seen that the combinations
p and q are invariant under an arbitrary rescaling of 7.
The important conclusion to be drawn from this iden-
tification of the Lyapunov exponent with a “thermody-
namical” function like (15) is that near the critical point
at which two of its extrema merge and disappear the
problem admits a one-dimensional representation. This
feature is in contrast with the infinite-dimensional char-
acter of the whole function space, and can be used to
strongly simplify the analysis of our system around that
critical point. The above indicated mean-field-like ap-
proach can be further exploited by means of more elabo-
rate procedures, such as the renormalization group tech-
niques, rendering a more complete description of this crit-
ical phenomenon.
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V. FINAL REMARKS

Through the knowledge of the nonequilibrium poten-
tial or Lyapunov functional, we have studied a piecewise
linear reaction-diffusion model representing a bistable
system with one-dimensional geometry and partially re-
flecting boundary conditions.

Such a nonequilibrium potential has allowed us to an-
alyze the global stability of the system and the change in
the relative stability between attractors as some param-
eter (albedo or partial reflectivity at the borders, and/or
the system length) is varied. Through this Lyapunov
functional, we have also computed the mean lifetime or
mean first-passage time for the decay of the metastable
stationary state [14]. In this way, we have shown that
albedo BC’s not only control the relative stability be-
tween attractors, but also the response of the system un-
der the effect of fluctuations. We stress that the existence
of nontrivial stationary solutions is a consequence of the
BC’s and the finiteness of the system. On the contrary,
for an infinite system, we only have the trivial homoge-
neous structures as stationary solutions, all nonhomoge-
neous solutions being unstable.

The kind of calculation of mean first-passage time we
have performed here, which is a version for spatially ex-
tended systems analogous to the well known Kramers
procedure [15], is only valid when such mean first-passage
time is much longer than other characteristic times of
the system. For this to happen it is necessary that the
noise be small enough and the barrier between attractors

relatively high. That means we must be far from any
critical-like behavior.

We have also shown that for a certain region of pa-
rameter values the system behaves in a way resembling an
equilibrium phase transition near a critical point. In such
a situation, we have obtained a simplified description
of the system, that in spite of the infinite-dimensional
character of the functional space adopts the form of a
kind of one-order-parameter “thermodynamical” poten-
tial. The parameters of this “thermodynamical” poten-
tial are related to the parameters of the original (infinite-
dimensional) nonequilibrium potential. As one might
expect, in such a situation the result is analogous to a
mean-field description in equilibrium phase transitions.
This mean-field description could be improved by more
elaborate procedures.

The exploitation of the nonequilibrium potential no-
tion in order to describe the approach to equilibrium
within this model when starting from an arbitrary ini-
tial condition is under way [19].
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